Effects of swimming on metabolic recovery from anoxia in the painted turtle.

نویسندگان

  • Daniel E Warren
  • Donald C Jackson
چکیده

Anoxic submergence in the Western painted turtle results in a severe metabolic acidosis characterized by high plasma lactate and depressed arterial pH, a response similar to that seen in other vertebrates following exhaustive exercise. We tested the hypothesis that 1 or 2 h of aerobic swimming following anoxic submergence would enhance the rate of lactate disappearance from the blood just as sustained aerobic exercise does in mammals and fishes following strenuous exercise. Following 2 h of anoxic submergence at 25 degrees C and 1 h of recovery, the pattern of plasma lactate disappearance in turtles previously trained to swim in a flume and swum aerobically (2-3x resting V(O(2))) for 1 or 2 h did not differ significantly from that in trained and untrained non-swimming turtles. Turtles were fully recovered by 7-10 h post-anoxia. The response patterns also did not differ between treatments for arterial P(O(2)), P(CO(2)), pH, and plasma glucose and HCO(3)(-). Blood pH and plasma HCO(3)(-) recovered by 1 and 4 h, respectively. Despite the large lactate load, painted turtles are able to sustain periods of continuous swimming for at least 2 h without compromising metabolic recovery. Although this activity did not consistently enhance recovery, the rate of lactate disappearance was positively correlated with oxygen consumption rate in actively and passively recovering turtles. We suggest that active recovery was not a more important enhancer of recovery either because swimming may have had an inhibitory effect on hepatic gluconeogenesis or that there is variation in fuel utilization during the swimming period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of heat shock proteins in turtle and mammal hearts: relationship to anoxia tolerance.

Heat shock proteins (HSPs) may play a cardioprotective role during hypoxia or ischemia. We hypothesized that cardiac tissue from hypoxia-tolerant animals might have high levels of specific HSPs. We measured myocardial HSP60 and HSP72/73 in painted and softshell turtles during normoxia and anoxia (12 h) and after recovery (12 or 24 h). We also measured myocardial HSPs in normoxic rats and rabbit...

متن کامل

Hydrodynamic stability of the painted turtle (Chrysemys picta): effects of four-limbed rowing versus forelimb flapping in rigid-bodied tetrapods.

Hydrodynamic stability is the ability to resist recoil motions of the body produced by destabilizing forces. Previous studies have suggested that recoil motions can decrease locomotor performance, efficiency and sensory perception and that swimming animals might utilize kinematic strategies or possess morphological adaptations that reduce recoil motions and produce more stable trajectories. We ...

متن کامل

Transcriptomic Responses of the Heart and Brain to Anoxia in the Western Painted Turtle

Painted turtles are the most anoxia-tolerant tetrapods known, capable of surviving without oxygen for more than four months at 3°C and 30 hours at 20°C. To investigate the transcriptomic basis of this ability, we used RNA-seq to quantify mRNA expression in the painted turtle ventricle and telencephalon after 24 hours of anoxia at 19°C. Reads were obtained from 22,174 different genes, 13,236 of ...

متن کامل

Comparative shell buffering properties correlate with anoxia tolerance in freshwater turtles.

Freshwater turtles as a group are more resistant to anoxia than other vertebrates, but some species, such as painted turtles, for reasons not fully understood, can remain anoxic at winter temperatures far longer than others. Because buffering of lactic acid by the shell of the painted turtle is crucial to its long-term anoxic survival, we have tested the hypothesis that previously described dif...

متن کامل

Effects of anoxia and metabolic arrest on turtle and rat cortical neurons.

The responses of turtle and rat cortical pyramidal neurons to various pharmacological treatments were measured using intracellular recordings. Turtle neurons survived both anoxia and pharmacological anoxia for 180 min with no noticeable effect. Rat pyramidal neurons responded with a loss in membrane resistance, followed by a transient hyperpolarization, and a subsequent depolarization to a zero...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 207 Pt 15  شماره 

صفحات  -

تاریخ انتشار 2004